Idle Finance Yield Tranches Security Review

Reviewer
Hans

September 2, 2023

https://twitter.com/hansfriese

Contents

1

N~ o a &~ WwDN

Executive Summary

Scope of the Audit

About Hans

Disclaimer

Protocol Summary

Additional Comments

Findings

71

7.2

7.3

7.4

Medium Risk e e e e
7.1.1 Read-only reentrancy in Id1eCDO: : _withdraw() and IdleCDOInstadappLiteVariant::_-
withdraw() e e e e e e e e e e e e e e
7.1.2 The trancheAPRSplitRatio is updated using a slightly stale prices in the function _with-
draw() in case that excess tokens are received fromthe strategy
7.1.3 latestHarvestBlock should be updated first before calling setReleaseBlocksPeriod()
7.1.4 Inconsistent update of 1astNAVAA/1astNAVBB in _withdraw()
LOW ISSUES o o e e
7.2.1 abi.encodePacked() should not be used with dynamic types when passing the result to a
hash function such as keccak256() e
7.2.2 Do not use deprecated library functions L L
Informational Findings
7.3.1 require() /revert() statements should have descriptive reason strings
Gas Optimizations L e e
7.41 Use assembly to check for address(0)
7.4.2 Cachearray lengthoutside ofloop
743 Use Custom Errors e e e e e
7.4.4 Don'tinitialize variables with defaultvalue L.
7.4.5 ++i costs less gas than i++, especially when it's used in for-loops (--i/i--t00)
7.4.6 Use private rather than publicforconstants
7.4.7 Splitting require() statements that use && savesgas L.
7.4.8 Use |=0 instead of > 0 for unsigned integer comparison

WW W W W W w N

1 Executive Summary

Over the course of 5 business days in total, ldle Finance engaged with Hans to review idle-tranches.

Summary

Type of Project Defi

Timeline 28th Aug, 2023 - 1st Sep, 2023
Methods Manual Review
Documentation High

Testing Coverage | High

A comprehensive security review identified a total of 7 issues and 8 Gas optimization suggestions.

Repository | Initial Commit

Idle Finance | 119de741c82426602fdfa1a948a8db72c00de802

Total Issues
High Risk 0
Medium Risk 4
Low Risk 2
Informational 1
Gas Optimization | 8

The reported vulnerabilities were addressed by the Idle Finance team, and the mitigation underwent a review
process and was verified by Hans.

Repository | Final Commit

Idle Finance | f2d5d9a6f88a8c4810052768195f23d33b80e09a

https://idle.finance/
https://twitter.com/hansfriese
https://github.com/Idle-Labs/idle-tranches.git
https://idle.finance/
https://github.com/Idle-Labs/idle-tranches/commit/119de741c82426602fdfa1a948a8db72c00de802
https://idle.finance/
https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a

2 Scope of the Audit

This incremental audit was conducted for 2 files:
» Id1eCDO.sol - Main file with all the logic for tranches management and for eventual loss management.

* IdleCDOInstadappLiteVariant.sol - A variant of Id1eCDO.sol with some additional logic to handle In-
stadapp Lite integration for iETHv2 (which has withdrawal fees).

3 About Hans

Hans is an esteemed security analyst in the realm of smart contracts, boasting a firm grounding in mathematics
that has sharpened his logical abilities and critical thinking skills. These attributes have fast-tracked his journey
to the peak of the Code4rena leaderboard, marking him as the number one auditor in a record span of time. In
addition to his auditor role, he also serves as a judge on the same platform. Hans' innovative insight is evident in
his creation of Solodit, a vital resource for navigating consolidated security reports. In addition, he is a co-founder
of Cyfrin, where he is dedicated to enhancing the security of the blockchain ecosystem through continuous efforts.

4 Disclaimer

| endeavor to meticulously identify as many vulnerabilities as possible within the designated time frame; however,
I must emphasize that | cannot accept liability for any findings that are not explicitly documented herein. It is
essential to note that my security audit should not be construed as an endorsement of the underlying business
or product. The audit was conducted within a specified timeframe, with a sole focus on evaluating the security
aspects of the solidity implementation of the contracts.

While | have exerted utmost effort in this process, | must stress that | cannot guarantee absolute security. It is
a well-recognized fact that no system can be deemed completely impervious to vulnerabilities, regardless of the
level of scrutiny applied.

5 Protocol Summary

Idle DAO is a decentralized collective that built a set of products that aim to unlock the power of decentralized
finance as a one-stop source of yield. It allows users to algorithmically optimize their digital asset allocation across
leading DeFi protocols, whether they want to maximize it or keep tabs on their risk-return profile. The product to be
audited is called Yield Tranches (YT) and allows users to deposit assets in a Defi protocol with two risk-adjusted
investment profiles (Senior and Junior).

6 Additional Comments

The security assessment was carried out with a narrow focus on the contracts. Due to time limitations and the
incremental nature of the reviews, the results might not be comprehensive and might not represent the complete
security profile of the protocol.

7 Findings

7.1 Medium Risk
7.1.1 Read-only reentrancy in Id1eCDO: : _withdraw() and IdleCDOInstadapplLiteVariant::_withdraw()

Severity: Medium
Context: IdleCDO.sol#L499, IdleCDOlnstadappLiteVariant.sol#L67

https://code4rena.com/@hansfriese
https://code4rena.com/leaderboard
https://solodit.xyz
https://www.cyfrin.io/
https://github.com/Idle-Labs/idle-tranches/blob/119de741c82426602fdfa1a948a8db72c00de802/contracts/IdleCDO.sol#L499
https://github.com/Idle-Labs/idle-tranches/blob/119de741c82426602fdfa1a948a8db72c00de802/contracts/IdleCDOInstadappLiteVariant.sol#L67

Description: The current implementation of Id1eCDO: : _withdraw() and IdleCDOInstadapplLiteVariant::_-
withdraw() are against the CEl pattern and vulnerable to read-only reentrancy. Id1eCDO: : _withdraw() is imple-
mented as below and we can see that the underlying tokens are sent to the sender before updating the protocol's
core accounting state variables. Because of the nonReentrant modifier, it is not directly exploitable via a normal re-
entrancy attack but it is still vulnerable to a read-only reentrancy attack. It is worthy noting that the 1astNAVAA and
1lastNAVBB are used in the function virtualPrice(), so if the attacker query the virtualPrice () of the tranche
price in the transfer callback (if any), the protocol will return a wrong price. Assuming the underlying tokens are
carefully allowed by the Idle team, the likelihood is low for this function. The similar issue exists in the function
IdleCDOInstadappLiteVariant::_withdraw() as well.

IdleCDO.sol

473: function _withdraw(uint256 _amount, address _tranche) virtual internal nonReentrant returns
— (uint256 toRedeem) {

474: // check if a deposit is made in the same block from the same user
475: _checkSameTx () ;

476: // check if _strategyPrice decreased

477 _checkDefault();

478: // accrue interest to tranches and updates tranche prices

479: _updateAccounting() ;

480: // redeem all user balance if 0 is passed as _amount

481: if (_amount == 0) {

482: _amount = IERC20Detailed(_tranche) .balanceOf (msg.sender) ;

483: }

484 : require(_amount > 0, '0');

485: address _token = token;

486: // get current available unlent balance

487 : uint256 balanceUnderlying = _contractTokenBalance (_token) ;

488: // Calculate the amount to redeem

489: toRedeem = _amount * _tranchePrice(_tranche) / ONE_TRANCHE_TOKEN;
490: if (toRedeem > balanceUnderlying) {

491: // if the unlent balance %s not enough we try to redeem what's missing directly from the
— strategy

492: // and then add it to the current unlent balance

493: // NOTE: A difference of up to 100 wet due to rounding is tolerated
494 : toRedeem = _liquidate(toRedeem - balanceUnderlying, revertIfTooLow) + balanceUnderlying;
495: }

496: // burn tranche token

497 : Id1eCDOTranche (_tranche) .burn(msg.sender, _amount);

498: // send underlying to msg.sender

499: IERC20Detailed(_token) .safeTransfer(msg.sender, toRedeem);//Caudit-issue aginst CEI pattern
500:

501: // update NAV with the _amount of underlyings removed

502: if (_tranche == AATranche) {

503: lastNAVAA -= toRedeem;

504: } else {

505: lastNAVBB -= toRedeem;

506: }

507:

508: // update tranchedPRSplitRatio

509: _updateSplitRatio(_getAARatio(true));

510: }

Although it is not strictly in scope, we can see that the same vulnerability exists in Id1eCDOPoLidoVariant::_-
withdraw () and the likelihood is high because standard NFT interfaces include the onERC721Received() function
which is called by the safeTransferFrom() function.

Impact The attacker can query the wrong tranche price in the transfer callback and this can further be exploited
for other attacks.

Recommendation: Follow CEI pattern and update the protocol's core accounting state variables before sending

the underlying tokens to the sender.

Client: The finding is valid but the likelihood on tranches without NFTs is basically null as the underlying tokens are
carefully allowed by the Idle DAO team. The likelihood on tranches with NFTs (IdleCDOPoLidoVariant) is possible
but due to the non easy composability of this tranche we don't expect integrators to use this. Nonetheless we will
fix this issue in the next version of IdleCDO.

Hans: Verified the fix at commit c315183 and 209125c

7.1.2 The trancheAPRSplitRatio is updated using a slightly stale prices in the function _withdraw() in
case that excess tokens are received from the strategy

Severity: Medium
Context: IdleCDO.sol#L509

Description: If a user requests withdrawal of more than available underlying tokens, the function _withdraw()
will call _1iquidate () to redeem the missing tokens from the strategy. The function _liquidate() will return the
amount of tokens that were actually redeemed from the strategy capped to the requested amount.

IdleCDO.sol

565: function _1iquidate(uint256 _amount, bool _revertIfNeeded) internal virtual returns (uint256
«— _redeemedTokens) {

566: _redeemedTokens = IIdleCDOStrategy(strategy).redeemUnderlying(_amount);

567: if (_revertIfNeeded) {

568: uint256 _tolerance = liquidationTolerance;

569: if (_tolerance == 0) {

570: _tolerance = 100;

571: }

572: // keep " _tolerance® wei as margin for rounding errors

573: require(_redeemedTokens + _tolerance >= _amount, '5');

574: }

575:

576: if (_redeemedTokens > _amount) {

577: _redeemedTokens = _amount;//@follow-up capped amount is returned while it is not clear what
«— happens with the excess tokens

578: }

579: }

The function _withdraw() updates the trancheAPRSplitRatio at the end of the execution using the getAARa-
tio(true).

File: d:\hans\solo\idle\idle-tranches\contracts\IdleCDO.sol
473: function _withdraw(uint256 _amount, address _tranche) virtual internal nonReentrant returns
— (uint256 toRedeem) {

501: // update NAV with the _amount of underlyings removed//@audit-issue at this point there can be
— excess amount redeemed from the strategy and pricedd and priceBB are not up to date
502: if (_tranche == AATranche) {

503: lastNAVAA -= toRedeem;

504: } else {

505: lastNAVBB -= toRedeem;

506: }

507:

508: // update tranchedPRSplitRatio

509: _updateSplitRatio(_getAARatio(true));//Caudit-issue ratio is updated with old slightly stale
— prices

510: ¥

This means that the trancheAPRSplitRatio will be updated using stale prices. It is understood that normally the
strategy returns at most the requested amount of tokens, but it is not clear what happens if the strategy returns

https://github.com/Idle-Labs/idle-tranches/commit/c315183abdc70cc363e99f3af3ee7083f02891db
https://github.com/Idle-Labs/idle-tranches/commit/209125cd1f00fe2f4b786ffb7b84716756282e22
https://github.com/Idle-Labs/idle-tranches/blob/119de741c82426602fdfa1a948a8db72c00de802/contracts/IdleCDO.sol#L509

more tokens than requested. Assuming the amount of excess tokens will be small, the impact on the price is
expected to be small as well.

Impact trancheAPRSplitRatio is updated using slightly stale prices in case that the strategy returns more tokens
than requested.

Recommendation: Consider call _updateAccounting() before _updateSplitRatio() to update the
trancheAPRSplitRatio using the latest prices.

Client: Acknowledged. Even if we get 1 underlying more when redeeming from strategy (which would be really a
lot) and supposing this will slightly change the TVL ratio we would still avoid calling updateAccounting at the end
of withdraw as the accounting would only slightly change the interest split until the next updateAccounting call, but
at the expense of having all withdrawals to be way more expensive in terms of gas which is something we would
like to avoid as such call have high gas costs.

Hans: Acknowledged.

7.1.3 latestHarvestBlock should be updated first before calling setReleaseBlocksPeriod()

Severity: Medium
Context: IdleCDO.sol#L.896

Description: If the admin updates releaseBlocksPeriod when latestHarvestBlock != block.number, _locke-
dRewards () will return the incorrect amount if there are rewards being unlocked.

Consider the following scenario.

1. At block 0, releaseBlocksPeriod = 6400(1 day) and harvestedRewards = 100 after calling harvest ().
latestHarvestBlock= 0.

2. At block 3200, during the normal deposit, _lockedRewards() will return 100 * 3200 / 6400 = 50 and it
will be used through _deposit() => updateAccounting() => getContractValue() => lockedRewards()
to update the tranche prices.

3. After that at the same block, the admin called setReleaseBlocksPeriod() with 12800(2 days) and _locke-
dRewards () will return 100 * (12800 - 3200) / 12800 = 75. It means already unlocked 25 rewards are
locked again.

Impact The reward distribution logic using _lockedRewards () wouldn’t work as expected after calling setRelease-
BlocksPeriod().

Recommendation: setReleaseBlocksPeriod() should call harvest() first or update latestHarvestBlock(should
be equal block.number) and harvestedRewards accordingly to return the same _lockedRewards after the update.

Client: Acknowledged. In general | think this is valid, but | don't think we ever called setReleaseBlocksPeriod
and even if called during a release of rewards we would only posticipate a bit the rewards release (again valid
finding but not really concerning). Regarding the recommendation, | would exclude calling harvest as it requires a
lot of 'logic’ (ie params that we need to calculate) and this may not always be possible to do easily (eg if multisig is
doing the tx as it's the owner of the contract). If we set 1atestHarvestBlock equal to block.number and there is
an active distribution we would completely restart the unlock period | think which is probably worse than the currect
solution. The easiest thing would be to add a comment for the method but not enforcing this with code, not ideal
but better than nothing.

Hans: Acknowledged.

7.1.4 Inconsistent update of 1astNAVAA/1astNAVBB in _withdraw()

Severity: Medium

Context: 1dleCDO.sol#L503

IdleCDOlnstadappLiteVariant.sol#L117

Description: Id1eCDO. _withdraw() uses inconsistent logic to update 1astNAVAA/1astNAVBB.

https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37f556/contracts/IdleCDO.sol#L896
https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37f556/contracts/IdleCDO.sol#L503
https://github.com/Idle-Labs/idle-tranches/blob/8740aa6847391a1ee1cb9ca222558643de37f556/contracts/IdleCDOInstadappLiteVariant.sol#L117

In IdleCDO. _withdraw(), it uses toRedeem after applying the tolerance.

toRedeem = _amount * _tranchePrice(_tranche) / ONE_TRANCHE_TOKEN;
if (toRedeem > balanceUnderlying) {
// if the unlent balance is not enough we try to redeem what's missing directly from the strategy
// and then add it to the current unlent balance
// NOTE: 4 difference of up to 100 weti due to rounding is tolerated
toRedeem = _liquidate(toRedeem - balanceUnderlying, revertIfTooLow) + balanceUnderlying;
}
// burn tranche token
Id1eCDOTranche (_tranche) .burn(msg.sender, _amount);
// send underlying to msg.sender
IERC20Detailed (_token) .safeTransfer (msg.sender, toRedeem);

// update NAV with the _amount of underlyings removed
if (_tranche == AATranche) {
lastNAVAA -= toRedeem;
} else {
lastNAVBB -= toRedeem;
}

If toRedeem was decreased due to the tolerance during _liquidate(), it uses the reduced amount for last-
NAVAA/1lastNAVBB updates.

But in IdleCDOInstadappLliteVariant._withdraw(), it applies the whole amount when _paidFee > _expected-
Fee.

uint256 _want = toRedeem;
// calculate expected fee
uint256 _expectedFee = _calcUnderlyingProtocolFee(toRedeem) ;
// actual fee patid, considering the unlent balance present in this contract
// this wvalue should be lte than _ezpectedFee as only a portion of the toRedeem
// will be redeemed from the lending provider if there is some unlent balance
uint256 _paidFee;
if (toRedeem > balanceUnderlying) {
// tf the unlent balance is not enough we try to redeem what's missing directly from the

— strategy
// and then add it to the current unlent balance
(toRedeem, _paidFee) = _liquidateWithFee(toRedeem - balanceUnderlying, revertIfTooLow);

// add the unlent balance to the redeemed amount
toRedeem += balanceUnderlying;
// be sure to remove the missing fee, even when using
// the unlent balance the user should pay the full fee
if (_paidFee < _expectedFee) {
toRedeem -= (_expectedFee - _paidFee);
}
} else {
// user ts redeeming all from the unlent balance but the fee is still applied,
// the pool is 'gaining' the _ezpectedFee which will increase the lastNAV
toRedeem -= _expectedFee;

// burn tranche token

Id1eCDOTranche(_tranche) .burn(msg.sender, _amount);

// send underlying to msg.sender
IERC20Detailed (_token) .safeTransfer (msg.sender, toRedeem);

// update NAV with the _amount of underlyings removed (eventual fee gained is not
// considered here so virtualPrice will be updated accordingly)
if (_tranche == AATranche) {

lastNAVAA -= _want;
} else {
lastNAVBB -= _want;

Lets assume _want = 1000, toRedeem = 900, _paidFee = 100, _expectedFee = 50 after calling
_liquidateWithFee().

If we apply the same logic as Id1eCD0. _withdraw() including the _expectedFee, it should reduce toRedeem +
_expectedFee = 950 because _paidFee - _expectedFee contains the tolerance that is ignored in Id1eCDO.

| think Id1eCDOInstadappLiteVariant's logic is correct and Id1eCDO. _withdraw() should use the original toRe-
deem before calling _liquidate().

Impact 1astNAVAA/1astNAVBB might be tracked incorrectly after the liquidation.

Recommendation: Id1eCDO and IdleCDOInstadappLiteVariant should use the same logic to update last-
NAVAA/1astNAVBB.

Client: The finding is correct. We will fix this in the next version of Id1eCDO.sol

Hans: Verified the fix at commit c315183.

https://github.com/Idle-Labs/idle-tranches/commit/c315183abdc70cc363e99f3af3ee7083f02891db

7.2 Low Issues

7.2.1 abi.encodePacked() should not be used with dynamic types when passing the result to a hash
function such as keccak256()

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash collisions
(e.g. abi.encodePacked(0x123,0x456) => 0x123456 => abi.encodePacked(0x1,0x23456), but
abi.encode(0x123,0x456) => 0x0...1230...456). "Unless there is a compelling reason, abi.encode should be
preferred”. If there is only one argument to abi.encodePacked() it can often be cast to bytes() or bytes32()
instead. If all arguments are strings and or bytes, bytes. concat () should be used instead

File: IdleCDO.sol
1010: _lastCallerBlock = keccak256(abi.encodePacked(tx.origin, block.number));

1015: require(keccak256 (abi.encodePacked(tx.origin, block.number)) != _lastCallerBlock, "8");

Client: Acknowledged. There are no direct issues of collision here as we use it with address + uint256

Hans: Acknowledged.

7.2.2 Do not use deprecated library functions

safeApprove is deprecated in favor of safeIncreaseAllowance and safeDecreaseAllowance, refer to here.

File: IdleCDO.sol

998: IERC20Detailed (_token) .safeApprove (_spender, 0);

Client: We will remove the function _removeAllowance() because it is not used anywhere.

Hans: Verified it's fixed at commit f2d5d9a.

7.3 Informational Findings

7.3.1 require() / revert() statements should have descriptive reason strings

File: IdleCDO.sol

811: require(_maxDecreaseDefault < FULL_ALLOC);

Client: Fixed at commit f2d5d9a.

Hans: Verified.

7.4 Gas Optimizations
7.4.1 Use assembly to check for address (0)

Refer to here for more details.

https://docs.soliditylang.org/en/v0.8.13/abi-spec.html#non-standard-packed-mode
https://ethereum.stackexchange.com/questions/30912/how-to-compare-strings-in-solidity#answer-82739
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/566a774222707e424896c0c390a84dc3c13bdcb2/contracts/token/ERC20/utils/SafeERC20.sol#L38
https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://medium.com/@kalexotsu/solidity-assembly-checking-if-an-address-is-0-efficiently-d2bfe071331

File: IdleCDO.sol

63: require(token == address(0), '1');

64: require(_rebalancer != address(0) && _strategy != address(0) && _guardedToken != address(0),
— I|Oll) ;

64: require(_rebalancer != address(0) && _strategy != address(0) && _guardedToken != address(0),
— I|OI|) ;

64: require(_rebalancer != address(0) && _strategy != address(0) && _guardedToken != address(0),
— I|OI|) ;

290: if (_referral != address(0)) {

848: require((rebalancer = _rebalancer) != address(0), '0');//CGaudit-ok

854 : require((feeReceiver = _feeReceiver) != address(0), '0');//Caudit-ok

860: require((guardian = _guardian) != address(0), '0');//Caudit-ok

Client: We will keep it as is as the gain should be minimal but more readable.

Hans: Acknowledged.

7.4.2 Cache array length outside of loop

If not cached, the solidity compiler will always read the length of the array during each iteration. That is, if it is a
storage array, this is an extra sload operation (100 additional extra gas for each iteration except for the first) and if
it is a memory array, this is an extra mload operation (3 additional gas for each iteration except for the first).

File: IdleCDO.sol

658: for (uint256 i = 0; i < _rewards.length; i++) {

Client: Fixed at commit f2d5d9a.

Hans: Verified.

7.4.3 Use Custom Errors

Instead of using error strings, to reduce deployment and runtime cost, you should use Custom Errors. This would
save both deployment and runtime cost. Refer to here for more details.

10

https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://blog.soliditylang.org/2021/04/21/custom-errors/

File: IdleCDO.sol

64: require(_rebalancer != address(0) && _strategy !'= address(0) && _guardedToken != address(0),
N non);

320: require(skipDefaultCheck, "4");

551: require(lastStrategyPrice * (FULL_ALLOC - maxDecreaseDefault) / FULL_ALLOC <= currPrice,
— l|4ll);

979: require(msg.sender == guardian || msg.sender == owner(), "6");

984: require(msg.sender == rebalancer || msg.sender == owner(), "6");

1015: require(keccak256 (abi.encodePacked(tx.origin, block.number)) != _lastCallerBlock, "8");

File: IdleCDOPoLidoVariant.sol
51: require(_amount > 0, "0");

65: require(tokenIds.length != 0, "no NFTs");

Client: Acknowledged.

Hans: Acknowledged.

7.4.4 Don't initialize variables with default value

File: IdleCDO.sol

658: for (uint256 i = 0; i < _rewards.length; i++) {

Client: Fixed at commit f2d5d9a.

Hans: Verified.

7.4.5 ++i costs less gas than i++, especially when it's used in for-loops (--i/i-- too)

File: IdleCDO0.sol

658: for (uint256 i = 0; i < _rewards.length; i++) {

Client: Fixed at commit f2d5d9a.

Hans: Verified.

7.4.6 Use private rather than public for constants

If needed, the values can be read from the verified contract source code, or if there are multiple values there can
be a single getter function that returns a tuple of the values of all currently-public constants. Saves 3406-3606 gas
in deployment gas due to the compiler not having to create non-payable getter functions for deployment calldata,
not having to store the bytes of the value outside of where it's used, and not adding another entry to the method
ID table

11

https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://github.com/code-423n4/2022-08-frax/blob/90f55a9ce4e25bceed3a74290b854341d8de6afa/src/contracts/FraxlendPair.sol#L156-L178

File: IdleCDOPoLidoVariant.sol

20: IStMATIC public constant stMatic = IStMATIC(0x9ee91F9f426fA633d227f7a9b000E28b9dfd8599) ;

Client: Acknowledged. Won't fix because those pulbic constants might be being used by other contracts.

Hans: Acknowledged.

7.4.7 Splitting require() statements that use && saves gas

File: IdleCDO.sol

64: require(_rebalancer != address(0) && _strategy != address(0) && _guardedToken != address(0),
s I|Oll);

Client: Fixed at commit f2d5d9a.

Hans: Verified.

7.4.8 Use !=0 instead of > 0 for unsigned integer comparison

File: IdleCDO.sol

245: if (_stkIDLEPerUnderlying > 0) {
393: if (totalGain > 0) {

406: if (totalGain > 0) {

422: if (_newJuniorTVL > 0) {
460: if (_amount > 0) {

484: require(_amount > 0, '0');
599: if (_path.length > 0) {

651: if (_extraData.length > 0) {
File: IdleCDOPoLidoVariant.sol

51: require(_amount > 0, "0");

Client: The finding does not apply for totalGain and _newJuniorTVL as they are signed integers. Fixed others at
commit f2d5d9a.

Hans: Verified.

12

https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a
https://github.com/Idle-Labs/idle-tranches/commit/f2d5d9a6f88a8c4810052768195f23d33b80e09a

	Executive Summary
	Scope of the Audit
	About Hans
	Disclaimer
	Protocol Summary
	Additional Comments
	Findings
	Medium Risk
	Read-only reentrancy in IdleCDO::_withdraw() and IdleCDOInstadappLiteVariant::_withdraw()
	The trancheAPRSplitRatio is updated using a slightly stale prices in the function _withdraw() in case that excess tokens are received from the strategy
	latestHarvestBlock should be updated first before calling setReleaseBlocksPeriod()
	Inconsistent update of lastNAVAA/lastNAVBB in _withdraw()

	Low Issues
	abi.encodePacked() should not be used with dynamic types when passing the result to a hash function such as keccak256()
	Do not use deprecated library functions

	Informational Findings
	require() / revert() statements should have descriptive reason strings

	Gas Optimizations
	Use assembly to check for address(0)
	Cache array length outside of loop
	Use Custom Errors
	Don't initialize variables with default value
	++i costs less gas than i++, especially when it's used in for-loops (--i/i-- too)
	Use private rather than public for constants
	Splitting require() statements that use && saves gas
	Use != 0 instead of > 0 for unsigned integer comparison

